今天给各位分享confocal价格的知识,当然也会对conflux价格相关的进行解释,如果我们的解答可以解决您现在面临的问题,不要忘记关注本站,现在开始吧!
本文目录一览:
显微拉曼光谱仪哪个用的最多?比较好用的是什么?
相对于实验室台式拉曼之外,现场有更多的手持和便携仪器吸引大家的眼球。经过前两年市场的“爆发”之后,今年各便携/手持产品的厂商变得更加理智和成熟,他们相继推出更高技术含量的产品,比如谱识纳米的便携拉曼光谱仪及前处理系统;南京简智的差分拉曼光谱仪;鉴知的食品安全检测仪;海洋光学的快速手持物质识别仪;奥谱天成的便携拉曼光谱仪;如海光电的手持拉曼光谱仪等。
下面的各厂商供参考
研究级激光共聚焦拉曼光谱仪FinderVista
FinderVista“微曼”系列显微共聚焦激光拉曼光谱仪性局拍能特点:●告漏更高系统灵敏度:采用大通光口径影像校正光谱仪和进口低噪声科学级CCD。●适合多种样品,可在显微光路与宏光路之间自由切换。
品牌:ZOLIX
型号:Finder Vista
参考报价: 1200000元
激光拉曼光谱仪RTS-B
RTS系列多功能显微共焦拉曼系统,基于新一代显微共焦技术,采用先进的低噪声拉曼专用CCD探测器,高分辨率光谱仪,使易用性及灵敏度更加优越。
品牌:TEO
型号:RTS-B
参考报价: 500000元
RIMA激光拉曼显微成像系统2
RIMA激光拉曼显微成像系统RIMA拉曼显微高光谱成像系统Photonetc公司RIMA拉曼成像技术是新一代快速、高精度、面扫描激光拉曼技术,它将共聚焦显微技术与激光拉曼光谱技术完美结合,与传统的点成像拉曼系统不同
品牌:Photon etc
型号:RIMA激光拉曼显微成像系统
参考报价: 面议
Witec激光共聚焦拉曼光谱仪
Witec激光共聚焦拉曼光谱仪WITec成立于1997年,已成为纳米分析显微镜系统(拉曼光、AFM、SNOM)领域的市场领导者。
品牌:
型号:Witec
参考报价: 500000元
超高速激光拉曼显微成像系统
超高速激光拉曼显微成像系统所属类别:?专用实验设备?
品牌:Photon etc
型号:RIMA_Raman_imaging_system
参考报价: 面议
Emwave激光拉曼光谱仪A6
型号:ProTT-EZRadan-A技术参数测量范围:100-3300cm-1/100-4450cm-1激光波长:532nm激光线宽-85度信噪比(S/N):12000Emwave激光拉曼光谱仪A6性能特点
品牌:
型号:ProTT-EZRadan-A6
参考报价: 面议
RTS2激光共聚焦显微拉曼光谱系统
RTS2激光共聚焦显微拉曼光谱系统RTS-II多功能激光共聚焦显微拉曼光谱系统,基于新一代显微共焦技术,具有良好扩展性,可根据需求拓展为以拉曼为主要功能的显微光谱工作站,是您科学研究的最佳选择!
品牌:ZOLIX
型号:RTS2
参考报价: 100000元
FinderOne微区激光拉曼光谱仪
FinderOne微区激光拉曼光谱仪性能特点超高性价比满足科研级需求的超高性能自动曝光功能荧光背景扣除功能可定制测试分析软件扩展联用功能产品简介:FinderOne“微谱”系列拉曼光谱仪是卓立汉光公司研发的具有高灵敏度的微区激光拉曼光谱仪
品牌:ZOLIX
型号:Finder One
参考报价: 450000元
多桐友羡功能激光共聚焦显微拉曼光谱系统
RTS系列拉曼光谱仪RTS-II多功能激光共聚焦显微拉曼光谱系统RTS-II多功能激光共聚焦显微拉曼光谱系统,基于新一代显微共焦技术,具有良好扩展性,可根据需求拓展为以拉曼为主要功能的显微光谱工作站,是您科学研究的最佳选择
品牌:ZOLIX
型号:RTS-II
参考报价: 100000元
NamadicTM共聚焦显微拉曼光谱系统
NamadicTM共聚焦显微拉曼光谱系统NamadicTM是世界上唯一一款同时拥有532nm、785nm、1064nm三个从可见到近红外激光波长的共聚焦显微拉曼光谱仪,通过切换激发波长,能够最大限度的满足不同的应用
品牌:谱镭光电/SPL
型号:Nomadic TM
参考报价: 10000元
全自动对焦显微激光拉曼扫描成像光谱仪
全自动对焦显微激光拉曼扫描成像光谱仪FM-RM9000FM-RM9000将显微镜及拉曼光谱仪两者的优点结合。
品牌:
型号:FM-RM9000
参考报价: 面议
共聚焦显微拉曼光谱仪样品测试服务
昊量光电激光共聚焦显微拉曼光谱仪共享服务平台
品牌:Nanobase
型号:XperRam Compact
参考报价: 面议
雷尼绍inViaQontor显微拉曼光谱仪
仪器简介:雷尼绍公司于1992年推出RM系列激光显微拉曼光谱仪开始,在拉曼光谱领域开拓了一个新纪元。
品牌:雷尼绍/Renishaw
型号:inVia Qontor
参考报价: 面议
激光共聚焦拉曼光谱Alpha300Access
alpha300access也可依据客户要求进行定制,如选择特定扫描台、光谱仪、检测器或激光灯等,甚至在此基础上集成更高端的拉曼技术。
品牌:WITec
型号:Alpha 300 Access
参考报价: 800000元
高速,高空间分辨率显微共焦拉曼成像光谱仪
高速,高空间分辨率显微共焦拉曼成像光谱仪关键词:拉曼成像系统,激光拉曼成像光谱仪,共焦拉曼光谱仪,共焦拉曼成像光谱仪,共焦拉曼成像系统,拉曼成像高光谱,激光拉曼高光谱成像系统,激光拉曼高光谱成像仪,拉曼光谱仪
品牌:
型号:RIMA
参考报价: 面议
共聚焦拉曼显微系统RTS-mini
共聚焦拉曼显微系统RTS-mini拥有Plug-in特点的RTS-mini共聚焦拉曼显微系统,可跟多种显微镜和光谱仪联用,提供最佳的灵敏度和空间分辨率。
品牌:TEO
型号:RTS-mini
参考报价: 面议
OmniRS系列组合式激光拉曼光谱测量系统
OmniRS系列组合式激光拉曼光谱测量系统OmniRS系列组合式拉曼光谱测量系统,采用模块化的设计,选用了性能优良的光学组件,可根据实验的需要,灵活的选择所需的组件,如双单色仪、激光器、数据采集器等,适用于科研院所
品牌:ZOLIX
型号:OmniRS新
参考报价: 面议
日本HORIBA+XploRAPLUS+共聚焦拉曼光谱仪
详细信息:XploRAPLUS是一款全自动超快速显微拉曼成像光谱仪,它集众多独特功能于一身,不仅性能卓越,而且使用便捷、分析快速。
品牌:堀场/HORIBA
型号:XploRA PLUS
参考报价: 1200000元
激光拉曼光谱仪
激光共焦显微拉曼光谱仪产地:韩国型号:PRISM,FEX该激光共聚焦拉曼系统同时适用于显微样品或大尺寸样品测量,具有先进的三维共焦成像性能。
品牌:NOST
型号:PRISM, FEX
参考报价: 面议
天津港东LRS-2/3激光拉曼光谱仪
【仪器介绍】LRS-2/3型激光拉曼光谱仪是天津港东独立自主开发的国内首款教学级激光拉曼光谱仪,产品灵敏度高、操作简单、稳定性好、性价比高,已覆盖全国近80%的高等院校的物理光电专业,并可用于科研院所、
品牌:港东
型号:LRS-2/3
参考报价: 150000元
双波长便携式激光拉曼光谱仪
双波长便携式激光拉曼光谱仪FM-RM5000系列在实验中,经常不确定用哪种激发波长比较好?FM-RM5000系列便携式拉曼光谱仪,内部集中了两种波长的激光光源,是一种针对小样品的分析仪器。
品牌:
型号:FM-RM5000系列
参考报价: 面议
XperRam200共聚焦拉曼成像系统
韩国NANOBASE公司专业生产高性价比共聚焦激光拉曼成像系统,为科学和工业领域提供最高性价比解决方案。
品牌:Nanobase
型号:CONFOCAL_RAMAN_IMAGING_SYSTEM
参考报价: 面议
Ostec显微拉曼光谱仪E/M
RAMOSE/M系列3D扫描激光共焦显微拉曼光谱仪提供快速,高灵敏度分析和前所未有的使用便利性。
品牌:欧斯泰科/Ostec
型号:RAMOS E/M
参考报价: 面议
JASCONRS5000/7000共聚焦激光拉曼光谱仪
共聚焦激光拉曼光谱仪NRS-5000/7000series◆RealStandard激光拉曼的新时代拉曼分光法和红外分光法都是测定震动光谱法,但是和红外分光法相比容易抽样,具有可以测量到红外分光法无法测量的微小部位等特长的同时
品牌:日本分光JASCO/JASCO
型号:NRS-5000/7000
参考报价: 面议
雷尼绍inViaReflex显微拉曼光谱仪
仪器简介:雷尼绍公司于1992年推出RM系列激光显微拉曼光谱仪开始,在拉曼光谱领域开拓了一个新纪元。
品牌:雷尼绍/Renishaw
型号:inVia
参考报价: 面议
WITecAlpha300access共聚焦拉曼显微镜
alpha300access也可依据客户要求进行定制,如选择特定扫描台、光谱仪、检测器或激光灯等,甚至在此基础上集成更高端的拉曼技术。
品牌:WITec
型号:Alpha 300 access
参考报价: 面议
高速大面积共聚焦拉曼成像系统
高速大面积共聚焦拉曼成像系统高速大面积共聚焦拉曼成像系统,高速Mapping!
品牌:Nanobase
型号:RAMAN_IMAGING_SYSTEM.
参考报价: 面议
便携式激光拉曼光谱仪HE
仪器简介:HE高效拉曼过程分析仪已发展成为一款具有卓越性能的拉曼光谱仪,它具有很强的工业环境适应能力,以及可靠的过程控制能力。为适合工业环境的需要,采用了紧凑、坚固的结构设计,且内部无可移动部件。
品牌:HORIBA科学仪器事业部/HORIBA Scientific
型号:HE
参考报价: 850000元
爱丁堡一体化全自动显微共聚焦拉曼光谱仪RM5
产品介绍:RM5是爱丁堡全新推出适用于科研及分析工作的高端显微拉曼光谱仪!这是一款紧凑型全自动显微拉曼光谱仪,可满足高端科研及分析工作的需求。
品牌:爱丁堡/Edinburgh Instruments
型号:RM5
参考报价: 面议针
参考来源:仪器信息网 发布:冉盛网
求毕业论文超光学分辨率的NSOM(近场扫描光学显微镜)探讨,的文献综述
高分辨率光学显微术在生命科学中的应用
【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以咐搏及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。
【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平
在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发衡耐祥展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。
1 传统光学显微镜的分辨率
光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。
根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:
横向分辨率(x-y平面):dx,y=■
轴向分辨率(沿z光轴):dz=■
可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径N.A等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。
Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。
2 高分辨率三维显微术
在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进亩祥行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。
2.1 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。
共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。
3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。
2.2 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。
2.3 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达0.01nm,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上Kir2.1离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。
2.4 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。
3 表面高分辨率显微术
表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。
3.1 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。
3.2 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。
3.3 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。
1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。
【参考文献】
[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.
[2] Kam Z, Hanser B, Gustafsson MGL, et al.Computational adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.
[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.
[4] Goldman RD,Spector DL.Live cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.
[5] Monvel JB,Scarfone E,Calvez SL,et al.Image-adaptive deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.
[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷
显微镜是什么时候谁发明的
最早的显微镜是由一个叫詹森的眼镜制造匠人于 1590 年前后发明的。这个显微镜是用一个凹镜和一个凸镜做成的,制作水平还很低。詹森虽然是发明显微镜的第一人,却并没有发现显微镜的真正价值。也许正是因为这个原因,詹森的发明并没有引起世人的重视。事隔 90 多年后,显微镜又被荷兰人列文虎克研究成功了,并且开始真正地用于科学研究试验。关于列文虎克发明显微镜的过程,也是充满偶然性的。
列文虎克于 1632 年出生于荷兰的德尔夫特市,从没接受过正规的科学训练。但他是一个对新奇事物充满强烈兴趣的人。一次,他从朋友那里听说荷兰最大的城市阿姆斯特丹的眼镜店可以磨制放大镜,用放大镜可以把肉眼看不清的东西看得很清楚。他对这个神奇的放大镜充满了好奇心,但又因为价格太高而买不起。从此,他经常出入眼镜店,认真观察磨制镜片的工作,暗暗地学习着磨制镜片的技术。
功夫不负苦心人。1665 年,列文虎克终于制成了一块直径只有 0。3 厘米的小透镜,并做了一个架,把这块小透镜镶在架上,又在透镜下边装了一块铜板,上面钻了一个小孔,使光线从这里射进而反射出所观察的东西。这样,列文虎克的第一台显微镜成功了。由于他有着磨制高倍镜片的精湛技术,他制成的显冲坦微镜的放大倍数,超过了当时世界上已有的任何显微镜。
列文虎克并没有就此止步,他继续下功夫改进显微镜,进一步提高其性能,以便更好地去观察了解神秘的微观世界。为此,他辞退了工作,专心致志地研制显微镜。几年后,他终于制出了能把物体放大 300 倍的显微镜。
1675 年的一个雨天,列文虎克从院子里舀了一杯雨水用显微镜观察。他发现水滴中有许多奇形怪状的小生物在蠕动,而且数量惊人。在一滴雨水中,这些小生物要比当时全荷兰的人数还多出许多倍。以后,列文虎克又用显微镜发现了红血球和酵母菌。这样,他就成为世界上第一个微生物世界的发岩凯现者,被吸收为英国皇家学会的会员。
显微镜的发明和列文虎克的研究工作,为生物学的发展奠定了基础。利用显微镜发现,各种传染病都是由特定的细菌引起的。这就导致了抵抗疾病的健康检查、种痘和药物研制的成功。
据说,列文虎克是一个对自己的发明守口散枣桐如瓶、严守秘密的人。直到现在,显微镜学家们还弄不明白他是怎样用那种原始的工具获得那么好的效果.
显微镜是人类各个时期最伟大的发明物之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。
显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。上图:这是17世纪英国科学家罗伯特·胡克的显微镜。它有一根内装透镜的简易皮管,安放在一个可调整的架子上。灌满水的玻璃球用来把光聚焦到物体上。
最早的显微镜是16世纪末期在荷兰制造出来的。发明者可能是一个叫做札恰里亚斯·詹森的荷兰眼镜商,或者另一位荷兰科学家汉斯·利珀希,他们用两片透镜制作了简易的显微镜,但并没有用这些仪器做过任何重要的观察。
后来有两个人开始在科学上使用显微镜。第一个是意大利科学家伽利略。他通过显微镜观察到一种昆虫后,第一次对它的复眼进行了描述。第二个是荷兰亚麻织品商人安东尼·凡·列文虎克(1632年-1723年),他自己学会了磨制透镜。他第一次描述了许多肉眼所看不见的微小植物和动物。
1931年,恩斯特·鲁斯卡通过研制电子显微镜,使生物学发生了一场革命。这使得科学家能观察到像百万分之一毫米那样小的物体。1986年他被授予诺贝尔奖
显微镜是谁发明的
最早的显微镜是16世纪末期在宽烂荷兰制造出来的。发明者是亚斯·詹森,荷兰眼镜商,或者另一位荷兰科学家汉斯·利珀希,他们用两片透镜制作了简易的显微镜,但并没有用这些仪器做过任何重要的观察。
后来有两个人开始在科学上使用显微镜。第一个是意大利科学家伽利略。他通过显微镜观察到一种昆虫后,第一次对它的复眼进行了描述。第二个是荷兰亚麻织品商人列文虎克(1632年-1723年),他自己学会了磨制透镜。他第一次描述了许多肉眼所看不见的微小植物和动物。
1931年,恩斯特·鲁斯卡通过研制电子显微镜,使生物学发生了一场革命。这使得科学家能观察到像百万分之一毫米那样小的物体。1986年他被授予诺贝尔奖。
扩展资料
粗调部分故障的排除
粗调的主要故障是自动下滑或升降时松紧不一。所谓自动下滑是指镜筒、镜臂或载物台静止在某一位置时,不经调节,在它本身重量的作用下,自动地慢慢落下来的现象。其原因是镜筒、镜臂、载物台本身的重力大于静摩擦力引起的。解决的办法是增大静摩擦力,使之大于镜筒或镜臂本身的重力。
对于斜筒锋纯及大部分双目显微镜的粗调机构来慎基漏说,当镜臂自动下滑时,可用两手分别握往粗调手轮内侧的止滑轮,双手均按顺时针方向用力拧紧,即可制止下滑。如不凑效,则应找专业人员进行修理。
镜筒自动下滑,往往给人以错觉,误认为是齿轮与齿条配合的太松引起的。于是就在齿条下加垫片。这样,镜筒的下滑虽然能暂时止住,但却使齿轮和齿条处于不正常的咬合状态。运动的结果,使得齿轮和齿条都变形。尤其是垫得不平时,齿条的变形更厉害,结果是一部分咬得紧,一部分咬得松。因此,这种方法不宜采用。
此外,由于粗调机构长久失修,润滑油干枯,升降时会产生不舒服的感觉,甚至可以听到机件的摩擦声。这时,可将机械装置拆下清洗,上油脂后重新装配。
微调部分故障的排除
微调部分最常见的故障是卡死与失效。微调部分安装在仪器内部,其机械零件细小、紧凑,是显微镜中最精细复杂的部分。微调部分的故障应由专业技术人员进行修理。没有足够的把握,不要随便乱拆。
参考资料来源:百度百科 _显微镜(科研仪器设备)
关于confocal价格和conflux价格的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。